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Abstract 

 

This review presents a synopsis of the impacts of freshwater flow on fisheries 

production in estuarine and coastal systems, with particular emphasis on regional 

examples from eastern Australia and southern Africa. Freshwater flow impacts habitat 

availability, trophic interactions and fishers’ harvesting behaviour in estuarine and 

coastal systems. Seasonal and interannual variation in freshwater flow influences the 

distribution and abundance of fish and invertebrates through changes in growth, 

survival and recruitment. Episodic flood and drought events have pronounced impacts 

on fisheries production due to rapid changes in physicochemical conditions modifying 

species richness and diversity. Many documented reductions in fisheries production 

have been attributed to river regulation modifying natural variation in freshwater 

flow. Protecting natural flow regimes is likely to be an effective management strategy 

to maintain the production of estuarine and coastal fisheries. Understanding the 

freshwater requirements of estuarine and coastal fisheries will become increasingly 

important as climate change modifies the hydrological cycle and human population 

growth increases demand for water resources. One major challenge for scientists 

seeking to explore relationships between freshwater flow and fisheries production is 

to understand how variable flows influence resource availability, fishing activity and 

the economic performance of commercial fisheries in estuarine and coastal systems. 
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Introduction 

 

Not a single drop of water received from rain should be allowed to escape into the sea 

without being utilised for human benefit ― Parākramābāhu, the Great Sinhalese King 

of Sri Lanka, 1153-1186 

 

Most fisheries production worldwide is associated with three nutrient enrichment 

processes: coastal upwelling, tidal mixing and land-based runoff including major river 

outflow (Caddy and Bakun 1994). Natural variation in freshwater flowing from rivers 

strongly influences the production of fish, crustaceans and molluscs in estuarine and 

coastal fisheries (Beamish et al. 1994; Grimes 2001; Erzini 2005). Despite consistent 

links between freshwater flow and the production of estuarine and coastal fisheries, 

underlying mechanisms remain poorly understood. Proposed mechanisms include: (1) 

improved growth and survival due to nutrient enrichment increasing primary and 

secondary production (Darnaude 2005); (2) alterations to abundance resulting from 

salinity fluctuations modifying habitat availability (Kimmerer 2002a); (3) changes to 

migration and schooling altering catchability (Loneragan and Bunn 1999); (4) 

increased estuarine immigration owing to changes in offshore olfactory concentration 

gradients from riverine plume fronts (Whitfield 1994); and (5) recruitment variability 

arising from alterations to water physicochemistry (North and Houde 2003). These 

mechanisms are interrelated, operating over different temporal and spatial scales, and 

therefore no single characteristic of freshwater flow is likely to be solely responsible 

for influencing fisheries production in estuarine and coastal systems. 
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Freshwater flow is critical landscape process that has profound effects on the physical, 

chemical and biological properties of estuarine and coastal systems (Skreslet 1986). 

Seasonal and interannual variation in freshwater flow is essential for maintaining the 

structure and function of estuarine and coastal systems (Schlacher and Wooldridge 

1996; Sklar and Browder 1998; Young and Potter 2002). Nevertheless, there is still a 

false perception that freshwater is ‘lost’ when it enters estuarine or coastal systems 

(Gillanders and Kingsford 2002). Growing demand for freshwater resources has 

necessitated the construction of large dams and inter-basin transfer schemes often 

with little regard for impacts on estuarine and coastal fisheries (Walker 1985; 

Loneragan and Bunn 1999; Erzini 2005). When river regulation has modified natural 

variation in the flow regime, major declines in the production of estuarine and coastal 

fisheries have followed (Drinkwater and Frank 1994). Modified flow regimes have 

diminished the abundance of fish and invertebrates in estuarine and coastal systems, 

which has forced commercial fishers to exploit stocks further offshore (Roberts 2007). 

 

A comprehensive literature search identified more than 800 published articles 

examining the impacts of freshwater flow (or rainfall) on fishery-related topics in 

estuarine and coastal systems (Figure 1). Most of these articles (82%) focused on the 

ecological impacts of variation in freshwater flow on fish and invertebrates. In 

contrast, the economic impacts of variable flows on commercial fisheries have 

received relatively little attention. The aim of this review is to present a synopsis of 

the ecological and socio-economic impacts of freshwater flow on estuarine and 

coastal fisheries. Examples from temperate, tropical and subtropical regions are used 

to illustrate connections between freshwater flow and the life histories of fish and 

invertebrates in estuarine and coastal systems. Regional examples from eastern 
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Australia and southern Africa have been given particular emphasis because rivers in 

these areas exhibit the most variable flows in the world (Figure 2), which provides an 

ideal opportunity to extrapolate the impacts of freshwater flow on the production of 

estuarine and coastal fisheries. 

 

Nature of freshwater flows 

 

Freshwater flow regimes are often related to latitude (Finlayson (Finlayson and 

McMahon 1988; Kench 1999; Poff et al. 2006). Rivers at high latitudes exhibit 

relatively consistent flows but seasonal peaks typically follow melting of snow or 

glaciers (Walker 1985). Snowmelt from mountainous regions triggers peak flows in 

spring or summer in some areas of the world (e.g. Canada: Smith 2000), but snowmelt 

is not an important factor influencing flows in most Australian and southern African 

rivers (Finlayson and McMahon 1988). Flows at mid and low latitudes are relatively 

stochastic and less predicable (Walker 1985; Puckridge et al. 1998; Thoms and 

Sheldon 2000). Rivers in Australia and southern Africa exhibit extreme hydrological 

conditions characterised by the most variable flows in the world (Peel et al. 2004). 

Annual variation in freshwater flow from Australian (CV = 0.84) and southern African 

(CV = 0.73) rivers exceeds the world average (CV = 0.40) by a factor of more than 

×1.8 (Finlayson and McMahon 1988). Sporadic rainfall events generate stochastic 

river flows in these regions (Dettinger and Diaz 2000). In eastern Australia, rivers are 

influenced by alternating flood and drought dominated regimes (Erskine and Warner 

1998), with freshwater primarily delivered into estuarine and coastal systems by 

episodic flow events (Eyre 1998). 
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Climatic variability influences the quantity of freshwater entering estuarine and 

coastal systems by altering rainfall and evaporation rates. Teleconnection patterns are 

atmospheric circulation systems that influence climatic conditions over vast 

geographic areas (Barnston and Livezey 1987). One of the most prominent 

teleconnection patterns is the North Atlantic Oscillation (NAO) in the Northern 

Hemisphere (Rogers 1984; Hurrell 1995; Hurrell et al. 2003). The NAO is a driving 

force of climatic systems that strongly influences rainfall, air temperature and river 

flow (Hurrell and Van Loon 1997; McHugh and Rogers 2001; Rîmbu et al. 2002). 

Another prominent teleconnection pattern is the El Niño Southern Oscillation 

(ENSO), which exerts a profound influence on rainfall, air temperature and river flow 

in the Southern Hemisphere (Kuhnel et al. 1990; Molles and Dahm 1990; Allan et al. 

1996). Rainfall in Australia and southern Africa are also related to sea surface 

temperature oscillations in the Central Pacific (Power et al. 1999; Reason and Rouault 

2002) and the Indian Ocean (Landman and Mason 1999; Ashok et al. 2003). 

 

Once freshwater enters estuarine and coastal systems, its influence on environmental 

conditions depends on tidal regimes, wind direction and strength, estuary mouth 

topography and the nature of ocean currents. Freshwater flow influences a myriad of 

environmental factors in estuarine and coastal systems including: estuary channel 

dimensions (Reddering 1988), the status of an estuary mouth (Roy et al. 2001), the 

offshore extent of riverine plume fronts (Grimes and Kingsford 1996), tidal mixing 

(Hunter et al. 2010), water temperature (Attrill and Power 2002), salinity regimes 

(Kurup et al. 1998), dissolved oxygen concentrations (Somville and De Pauw 1982), 

nutrient inputs (Qu and Kroeze 2010), sediment delivery (Eyre 1998), turbidity 
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(Laheta and Stramski 2010), stratification (Schumann and Pearce 1997) and the 

residence time of pollutants (Baird and Heymans 1996). 

 

Anthropogenic modification of freshwater flow 

 

Relatively few modern-day rivers have retained their natural flow regime (Poff et al. 

1997). River headwaters have been diverted, middle reaches dammed and floodplains 

developed (Boon 1992). Concern has been expressed about the impacts of modifying 

the delivery of freshwater flow into estuarine and coastal systems (Benson 1981; 

Whitfield and Wooldridge 1994; Sklar and Browder 1998). River regulation disrupts 

the structure and function of estuarine and coastal systems by forcing 

physicochemical processes to deviate from natural successionary patterns (Sklar and 

Browder 1998; Gillanders and Kingsford 2002; Sheaves et al. 2007). Anthropogenic 

modification of freshwater flow alters sediment delivery (Eyre 1998), erosion 

processes (Roy 1984), riverine plume fronts (Grimes and Kingsford 1996), nutrient 

inputs (Sin et al. 1999), salinity regimes (Sklar and Browder 1998) and dissolved 

oxygen concentrations (Serafy et al. 1997). These alterations to physicochemical 

processes can have deleterious effects on fish and invertebrates by degrading habitat 

and restructuring food webs in estuarine and coastal systems (Pollard and Hannan 

1994; Baird and Heymans 1996; Adams et al. 2009). 

 

Aquatic species have evolved life history strategies in direct response to natural flow 

regimes (Bunn and Arthington 2002). Modification of freshwater flow impacts the 

distribution, abundance and species composition of fish and invertebrates in estuarine 

and coastal systems (Drinkwater and Frank 1994). Impacts are most pronounced for 
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anadromous species that require longitudinal and lateral connectivity between marine 

and freshwater habitats to migrate into riverine spawning grounds. On the Pacific 

coast of North America, for example, more than 75% of the original 2500 km of 

spawning and rearing habitat for chinook salmon (Oncorhynchus tshawytscha) has 

been eliminated due to the construction of an extensive network of hydroelectric dams 

in the Columbia River basin (Dauble and Geist 2000). In south-eastern Australia, 

stream impoundments have obstructed almost half of the aquatic habitat for migratory 

fish in coastal drainages (Harris 1984). Habitat destruction due to modified flow 

regimes can remove environmental cues required for migration (Zale and Adornato 

1996), lower species diversity (Plumstead 1990) and create inimical conditions for 

native biota favouring the colonisation of exotic species (Bunn and Arthington 2002). 

Protecting natural flow regimes is an essential requirement for the conservation of 

estuarine and coastal systems (Sklar and Browder 1998; Grange et al. 2000; Whitfield 

and Taylor 2009). 

 

Commercial fisheries are under increasing threat from river regulation modifying the 

delivery of freshwater into estuarine and coastal systems. Numerous examples of the 

major, irreversible impacts of river regulation on commercial fisheries exist 

worldwide (e.g. the Mediterranean Sea: Aleem 1972; the Gulf of Mexico: Sklar and 

Browder 1998 and the Caribbean Sea: Baisre and Arboleya 2006). A striking example 

of the consequences of modifying the delivery of freshwater into estuarine and coastal 

systems has been provided by the construction of the Aswan High Dam in the 

Mediterranean Nile delta (Bebars and Lasserre 1983). After the construction of the 

High Aswan Dam in 1969, freshwater flow from the Nile River decreased by 90% 

resulting in a loss of primary production and a consequent ~80% reduction in 
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Egyptian fishery landings in the Mediterranean coastal region. Declines in landings 

were primarily from economically valuable sardine (Wadie 1982) and (Bishara 

(Bishara 1984) fisheries. 

 

Relationships between freshwater flow and fisheries production 

 

Commercially harvested fish and invertebrates that exhibit varying degrees of 

estuarine dependency are influenced by variation in freshwater flow. Relationships 

between freshwater flow and the landings of more than 80 estuarine or coastal fishery 

species have been reported worldwide (examples shown in Table 1). Commercial 

landings of fish, crustaceans and molluscs have been related to variation in freshwater 

flow in temperate, tropical and sub-tropical regions. Relationships between freshwater 

flow and landings can be positive, negative or inconsistent among regions for the 

same species (Figure 3). For example, positive relationships between freshwater flow 

and landings of fish and invertebrates were reported in tropical northern Australia 

(Loneragan and Bunn 1999). Negative relationships between freshwater flow and 

landings of Róbalo (Eleginops maclovinus) were documented in subtropical 

central-south Chile (Quiñones and Montes 2001); and positive and negative 

relationships between freshwater flow and landings of dusky flathead (Platycephalus 

fuscus) were identified in temperate eastern Australia (Gillson et al. 2009). Some of 

the variability underlying relationships between freshwater flow and landings of fish 

and invertebrates may be related to factors such as geographic location (Gillanders 

and Kingsford 2002), estuarine geomorphology (Saintilan 2004), degree of river 

regulation within the surrounding catchment (Drinkwater and Frank 1994) and the life 

history of individual species (Robins et al. 2005). 
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Freshwater flow has profound effects on the early-life history stages of marine fish. 

For example, seasonal variation in freshwater flow influences the abundance, growth 

and mortality of age-0 red drum (Sciaenops ocellatus), pinfish (Lagodon rhomboides), 

sand seatrout (Cynoscion arenarius) and spot (Leiostomus xanthurus) in the 

Suwannee River estuary, North America (Purtlebaugh and Allen 2010). Natural 

variation in freshwater flow regulates recruitment by modifying the distribution, 

growth and mortality of juvenile marine fish (Kimmerer et al. 2001; North and Houde 

2003; Staunton-Smith et al. 2004). Riverine plume fronts that extend offshore are sites 

of intense biological activity that favourably influence the recruitment and survival of 

juvenile marine fish (Grimes and Kingsford 1996). Off the Bay of Biscay, for 

example, the spatial extent of the riverine plume front influences the production of 

juvenile sole (Solea solea) by determining the availability of estuarine nursery 

grounds (Le Pape et al. 2003). Large riverine plume fronts increase offshore 

concentrations of land-based cues that stimulate marine fish to migrate from coastal 

spawning grounds towards estuaries (James et al. 2007; Vinagre et al. 2007; Vinagre 

et al. 2009). 

 

Seasonal and interannual variation in freshwater flow influences the growth rates of 

fish and invertebrates. For example, high flows enhance the growth of barramundi 

(Lates calcarifer) in eastern Australia (Robins et al. 2006), and reduce the growth of 

Gulf menhaden (Brevoortia patronus) in North America (Deegan 1990). Freshwater 

flow influences growth rates by modifying food availability, salinity regimes and 

water temperature in estuarine and coastal systems (Loneragan and Bunn 1999; 

Robins et al. 2005; Shoji et al. 2006). Positive relationships between freshwater flow 
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and the growth rates of school prawns (Metapenaeus macleayi) were attributed to 

increased food availability and decreased salinity in the Hunter River estuary on the 

east coast of Australia (Ruello 1973). Experimental studies have shown that the 

food-unlimited growth rates of penaeid prawns function most efficiently within 

relatively narrow temperature-salinity ranges (O'Brien 1994; Kumlu et al. 2000; Su et 

al. 2010). Under laboratory conditions, for instance, banana prawns (Penaeus 

merguiensis) grow fastest at temperatures between 20-31°C and in salinities between 

20-30‰ (Staples and Heales 1991). Freshwater flow has a particularly pronounced 

effect on the growth of sessile mollusc species. Negative relationships between 

freshwater flow and the growth rates of eastern oysters (Crassostrea virginica) result 

from suboptimal low salinities (mean ≤ 17ppt) in North America (Wilber 1992; 

Livingston et al. 2000; Wang et al. 2008). 

 

Natural fluxes in the flow regime influence the catchability of fish and invertebrates 

by restricting their distribution or stimulating movement into areas where they are 

more likely to be caught (Loneragan and Bunn 1999). Freshwater effects on 

catchability are most noticeable for short-lived schooling species such as penaeid 

prawns. For example, high flows result in the increased catchability of school prawns 

due to reductions in salinity enhancing emigration rates from estuarine to coastal 

systems in eastern Australia (Racek 1959; Ruello 1973; Glaister 1978). Freshwater 

flow also has a pivotal role in determining the catchability of longer-lived, migratory 

fish species. For instance, freshwater flow alters the catchability of sea mullet (Mugil 

cephalus) in estuaries by stimulating migration and schooling due to salinity 

fluctuations altering habitat availability in eastern Australia (Gillson et al. 2009). 

Seasonal pulses of freshwater proximate to reproductive periods strongly influence 
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catchability by stimulating spawning migrations in estuarine-dependent fish. For 

example, increased freshwater flow into the Princess Charlotte Bay of eastern 

Australia results in the increased the catchability of barramundi by stimulating mature 

males to migrate towards estuarine spawning grounds at the beginning of the wet 

season (Balston 2009). 

 

Freshwater flow has a controlling influence on fisheries production by regulating 

habitat availability, trophic interactions and fishers’ harvesting behaviour in estuarine 

and coastal systems (Figure 4). Seasonal and interannual variation in freshwater flow 

modifies environmental conditions, stimulating a biological response and forcing 

commercial fishers to alter their fishing activity in estuarine and coastal systems. 

 

Habitat availability 

 

Natural variation in freshwater flow directly impacts fisheries production by 

regulating environmental factors that determine habitat availability for fish and 

invertebrates. Biotic effects stem from four main environmental factors forced by 

variation in freshwater flow: modified rates of sediment delivery; salinity fluctuations; 

turbidity changes; and thermal alteration. 

 

Temporal and spatial variation in freshwater flow controls the duration and frequency 

that an estuary mouth is open or closed by modifying rates of sediment delivery 

(Reddering and Rust 1990; Eyre 1998). The status of an estuary mouth influences the 

distribution, abundance and species composition of fish and invertebrate communities 

(Whitfield and Kok 1992; Vorwerk et al. 2003; Vivier and Cyrus 2009). Permanently 
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open estuaries maintain a constant connection with the sea, thus enabling fish and 

invertebrate migrations between estuarine and coastal systems (Kok and Whitfield 

1986; Potter et al. 1990; Whitfield 1994). Temporary mouth closure, however, inhibits 

species exchange resulting in the decreased abundance of marine taxa, recruitment 

limitation and a loss of estuarine nursery function (Wooldridge 1991; Harrison and 

Whitfield 1995; Young and Potter 2002). Prolonged mouth closure can result in 

extensive fish mortalities due to changes in salinity creating osmoregulatory stress. 

For example, prolonged closure of the Bot Estuary in southern Africa resulted in the 

mortality of more than 7000 fish from 9 species due to salinities lower than 3‰ 

producing oligohaline conditions (Bennett 1985). Similarly, prolonged closure of the 

Seekoei Estuary in southern Africa resulted in the mortality of more than 6000 fish 

from 11 species due to salinities higher than 95‰ producing hypersaline conditions 

(Whitfield 1989). 

 

Freshwater flow has a profound effect on community composition in estuarine and 

coastal systems by altering the distribution and abundance of marine, estuarine and 

freshwater species due to changes in salinity (Jassby et al. 1995; Hurst et al. 2004; 

Costa et al. 2007). One of the most essential adaptations of organisms that enter 

estuaries is the ability to adjust to changes in salinity (Panikkar 1960). Salinity 

strongly influences habitat selection, with species actively seeking optimum habitat 

conditions to minimise osmoregulatory costs and maximise growth rates (Edeline 

(Edeline et al. 2005; Cardona 2006; Shen et al. 2009). Differences in the salinity 

tolerance of euryhaline and stenohaline species are often attributed to the divergent 

responses of estuarine and coastal biota to variation in freshwater flow. Freshwater 

encroachment onto the continental shelf lowers salinity, expands estuarine conditions 
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offshore and permits euryhaine species to increase their distribution into coastal 

waters (Able 2005). Marine stenohaline species respond to increased freshwater flow 

by emigrating from estuarine into coastal systems due to lower salinity forcing the 

seaward displacement of habitat (Kimmerer 2002a; Whitfield and Harrison 2003; 

James et al. 2007). The influence of freshwater flow on salinity is particularly 

important for early-life history stages of fish in estuarine nursery grounds (Kimmerer 

et al. 2001; North and Houde 2003; Bolle et al. 2009). For example, freshwater flow 

influences the distribution of black bream (Acanthopagrus butcheri) eggs and larvae 

by altering salt-wedge position and halocline depth in the Glenelg and Hopkins 

estuaries on the east coast of Australia (Nicholson et al. 2008). A combination of 

intermediate flows (> ~3000 ML d-1) and strong vertical salinity stratification have 

also been shown to favourably influence the recruitment of black bream by increasing 

the availability of spawning habitat in Gippsland Lakes, eastern Australia (Jenkins et 

al. 2010). 

 

Freshwater flow can modify the distribution and abundance of marine fish by altering 

turbidity levels in estuarine and coastal systems (Cyrus and Blaber 1992; Blaber et al. 

1995; Grange et al. 2000). Turbidity has a profound effect on the early-life history 

stages of marine fish (Blaber and Blaber 1980; Whitfield 1994; Harris et al. 2001). 

Detailed studies in KwaZulu-Natal estuaries on the east coast of southern Africa have 

demonstrated that juvenile marine fish can be divided into categories depending on 

the turbidity preference of individual species (Cyrus and Blaber 1987a; 1987b). Cyrus 

and Blaber (1987c) identified that 16 out of 20 species studied exhibited a preference 

for turbid waters. Offshore turbidity gradients influence the feeding rates of fish, 

predation pressure and larval immigration into estuaries (Blaber and Blaber 1980; 
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Hecht and van der Lingen 1992; Utne-Palm 2002). Annual changes in freshwater flow 

into Chesapeake Bay on the east coast of North America control the survival and 

recruitment of anadromous fish by modifying the co-occurrence of larvae and 

predators in the high turbidity refuge (North and Houde 2003). Rapid increases in 

turbidity due to sudden influxes of freshwater can impair estuarine nursery function 

leading to increased larval mortality and decreased prey availability (Gonzalez-

Ortegon et al. 2010). 

 

Fisheries production is strongly influenced by freshwater flow altering water 

temperature in estuarine and coastal systems. For example, high flows and warm sea 

surface temperatures enhance salmon production in the North Pacific Ocean (Mantua 

et al. 1997). Temperature is an ecological resource that controls the metabolic rate and 

physiology of fish (Magnuson et al. 1979). Fish can be assigned a thermal niche 

according to the temperature preference of individual species (Magnuson and 

Destasio 1996). Habitat selection by juvenile marine fish is dependent on the 

availability of optimal thermal habitats in estuarine and coastal systems (Attrill and 

Power 2002; 2004). Freshwater flow and water temperature synergistically impact 

fish community structure. For instance, winter water temperature and freshwater flow 

were the most important environmental factors explaining the distribution and 

abundance of anadromous and coastal spawning species in the nursery grounds of 

Chesapeake Bay, North America (Wingate and Secor 2008). 

 

One of the major difficulties in isolating mechanisms underlying relationships 

between freshwater flow and fisheries production is that river flow impacts a myriad 

of environmental factors that determine the habitat characteristics of estuarine and 
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coastal systems. In central Mozambique, for example, positive relationships between 

Zambezi River flow and landings of white shrimp (Penaeus indicus) were attributed 

to lower salinities increasing available habitat for recruitment, elevated turbidity 

providing refuge from predators and floodwaters increasing larval dispersal in 

estuarine nursery grounds (Gammelsrød 1992). Another difficulty is that the direction 

of the relationship between freshwater flow and fisheries production can be attributed 

to differences in the physicochemical preference of individual species. For instance, 

the catch rates of 30 out of 45 fish species were related to differences in turbidity and 

salinity preference in the Emberly estuary in northern Australia (Cyrus and Blaber 

1992). 

 

Trophic interactions 

 

Freshwater flow can also indirectly impact fisheries production via a trophic cascade. 

Natural variation in freshwater flow regulates fisheries production by altering the 

delivery of terrestrially-derived nutrients and organic matter into estuarine and coastal 

systems (Darnaude 2005). Nutrient-enriched freshwater stimulates increased primary 

and secondary production (Mallin et al. 1993; Sin et al. 1999; Scharler and Baird 

2005), which is then propagated through the food web to species occupying higher 

trophic levels (Livingston et al. 1997; Salen-Picard et al. 2002; Connolly et al. 2009). 

Pulses of freshwater and associated nutrient inputs elevate phytoplankton and 

zooplankton abundance enhancing the recruitment, growth and survival of fish and 

invertebrates (Quiñones and Montes 2001; Hoffman et al. 2007; Kostecki et al. 2010). 
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Estuarine and coastal food web structure is highly sensitive to variation in freshwater 

flow (Darnaude 2005). Seasonal and interannual variation in freshwater flow 

determines the origin of carbon assimilated into pelagic and benthic food webs 

(Canuel et al. 1995; Vorwerk and Froneman 2009; Vinagre et al. 2010). Relationships 

between nutrient-enriched freshwater and fisheries production depend on how reliant 

a food web is on river flow to supply nutrients and organic matter. A trophic-driven 

mechanism for fisheries production is particularly important in oligotrophic or 

semi-enclosed coastal regions that receive limited nutrient supplies from oceanic 

currents and upwelling events (e.g. the Gulf of Mexico: Wissel and Fry 2005; the 

Mediterranean Sea: Darnaude et al. 2005; and the South China Sea: Qiu et al. 2010). 

Nutrient-enriched freshwater, however, may not always have such an important role 

in determining fisheries production. Kimmerer (2002a) demonstrated that variation in 

the abundance and survival of organisms at higher trophic levels in the San Francisco 

estuary resulted from freshwater flow altering habitat availability rather than trophic 

dynamics. Upward trophic transfer was an unlikely mechanism in this estuary given 

that the positive flow responses of taxa in higher trophic levels (e.g. fish and shrimp) 

were largely uncoupled from the inconsistent flow responses of taxa in lower trophic 

levels (e.g. phytoplankton and zooplankton). 

 

Stable isotope analysis has provided insight into how nutrient-enriched freshwater 

contributes to the energetic requirements of commercially harvested fish and 

invertebrates. Darnaude et al. (2004) used stable isotope analysis to link flow-related 

increases in polychaete abundance to the increased growth and survival of sole, 

confirming previously reported claims of relationships between freshwater flow and 

fisheries production in the oligotrophic northwest Mediterranean basin (Salen-Picard 
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et al. 2002). We can expect that the increased use of stable isotopes will improve our 

understanding of how nutrient-enriched freshwater influences fisheries production, 

particularly in the estuarine and coastal systems of eastern Australia and southern 

Africa that experience highly variable flow regimes. 

 

Harvesting behaviour 

 

Freshwater flow can indirectly impact fisheries production by altering the harvesting 

behaviour of commercial fishers in estuarine and coastal systems. Off the east coast of 

Australia, for example, commercial fishers respond to variable flows by modifying 

their harvesting behaviour to opportunistically exploit alterations to the catchability of 

fishery species (Gillson et al. under review). Adjustments to harvesting behaviour 

enable fishers’ to exploit the increased catchability of estuarine migrant species (e.g. 

school prawn) during periods of flood and marine estuarine-opportunist species (e.g. 

blue swimmer crab, Portunus pelagicus) during periods of drought. Fisheries 

scientists must recognise that relationships between freshwater flow and fisheries 

production represent a signal that is a mixture of ecological response and fishers’ 

harvesting behaviour. Fishing activity in estuarine and coastal systems is influenced 

by variation in freshwater flow (Loneragan and Bunn 1999; Moses et al. 2002; 

Lamberth et al. 2009). When freshwater flow alters the availability of fisheries 

resources, commercial fishers respond by modifying their harvesting behaviour to 

minimise fishing effort and maximise catch rates. Nevertheless, relatively few of the 

identified articles (8%) referred to the impacts of freshwater flow on fishing activity. 

More information on how variable flows influence fishers’ harvesting behaviour is 

required to better understand the impacts of freshwater flow on fisheries production. 
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Episodic flow events 

 

Freshwater flow per se may not be as important in determining fisheries production as 

episodic flow events (Gillson et al. 2009). Floods and droughts are episodic flow 

events that maintain and enhance biological productivity in estuarine and coastal 

systems (Flint 1985; Martin et al. 1992; Dolbeth et al. 2008). Along the eastern 

Australia coastline, for example, fish communities and dependent fisheries are 

affected by the flood-drought cycle (Loneragan and Bunn 1999; Robins et al. 2005; 

Ives et al. 2009). Estuarine migrant species primarily contribute to landings during 

flood, while marine estuarine-opportunist species primarily contribute to landings 

during drought (Figure 5). Flood and drought events modify the species composition 

of landings by altering rates of estuarine immigration and emigration due to changes 

in salinity altering habitat availability. 

 

Flood events temporary reduce species abundance and diversity in estuaries. 

Excessive delivery of freshwater into southern African estuaries can decrease fish 

abundance by forcing marine taxa to emigrate from estuarine into coastal systems due 

to rapid declines in salinity (Marais 1983; Ter Morshuizen et al. 1996; Whitfield and 

Harrison 2003). Floods create a physical barrier to the recruitment of marine taxa by 

lowering salinity, reducing available nursery habitat and forcing the seaward 

dispersion of larvae (Loneragan and Bunn 1999; Strydom et al. 2002; Whitfield and 

Harrison 2003). Estuarine food web structure can be disrupted by floodwaters altering 

the availability of pelagic and benthic food resources (Vinagre et al. 2010). Severe 

floods carrying large quantities of suspended sediment can be lethal to estuarine biota. 
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For example, a major flash flood into the Sundays River Estuary on the east coast of 

southern Africa resulted in extensive mortalities of marine migrant and estuarine 

resident species due to suspended sediment clogging gills, low salinities creating 

osmoregulatory stress and reduced dissolved oxygen levels causing asphyxiation 

(Whitfield and Paterson 1995). Post-flood reductions in abundance are most 

pronounced for sessile bivalve species that cannot actively avoid suspended sediment 

clogging feeding structures (Cardoso et al. 2008). Flood generated mass mortalities of 

fish result from the production of unfavourable water quality characteristics in 

estuarine and coastal systems. An excellent example of this has been provided by 

severe flood events that caused widespread mortalities of fish in the Richmond, 

Clarence and Mcleay River estuaries in eastern Australia (Dawson 2002; Eyre et al. 

2006; Kroon and Ludwig 2010). Floodwaters reduced dissolved oxygen 

concentrations to lethal limits for fish (≤ 1mg/L) by flushing decomposing organic 

matter and acidified water from the surrounding floodplains into these estuaries 

(Walsh et al. 2004). 

 

Drought events can have deleterious impacts on estuarine biota (Copeland 1966). 

Under drought conditions, estuaries can become “arms” of the sea with high salinity 

and poor water quality (Scharler and Baird 2005). Drought-induced high salinities 

result in a loss of freshwater species, declines in estuarine-dependent species and the 

establishment of marine adventurous species in the lower reaches of estuaries (Vivier 

and Cyrus 2002; Baptista et al. 2010). Reductions in the delivery of nutrient-enriched 

freshwater into estuaries can lead to recruitment failure in marine fish. For example, a 

five-year drought in the San Francisco Bay estuary resulted in reductions in the 

recruitment success of stripped bass due to larval starvation arising from pelagic food 
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web limitation (Bennett et al. 1995). The production of larval fish exported between 

estuarine and coastal systems can be significantly reduced during drought (Dolbeth et 

al. 2008). These alterations to biological productivity can have major impacts on 

estuarine fisheries. In eastern Australia, for example, the catch rates of estuarine 

gillnet fisheries decrease by 18-34% during drought (Gillson et al. 2009). In contrast, 

droughts increase oyster production by elevating oyster growth rates in the 

Apalachicola estuary on the east coast of North America (Livingston et al. 1997). 

 

Economic impacts of variable flows on estuarine and coastal fisheries 

 

Information on the economic impacts of variable flows on estuarine and coastal 

fisheries remains elusive. Only a small proportion of the identified articles (10%) 

alluded to the economic impacts of variable flows on estuarine and coastal fisheries, 

many without explicitly performing quantitative research (e.g. All 2006; Cardoso et 

al. 2008). Reduced flows due to droughts can lower the economic performance of 

commercial fisheries operating in estuarine and coastal systems. Revenue generation 

from commercial fishing businesses in estuarine and coastal fisheries decreased 

between 8-36% during periods of drought in eastern Australia (Gillson and Scandol 

under review). Businesses that operated ocean prawn trawls and estuarine prawn 

trawls primarily contributed to significant reductions in revenue (Figure 6). 

Diversifying harvesting behaviour to target a broad-range of species partially 

compensated for these reductions in revenue. Commercial fishers, however, would 

also benefit from augmenting income from enterprises unrelated to fishing during 

drought. A lack of information on the economic impacts of variable flows on 

commercial fisheries has hindered the representation of estuarine and coastal systems 
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in water allocation proposals. Identifying fishing sectors that are economically 

sensitive to variation in freshwater flow will improve understanding of the freshwater 

requirements of estuarine and coastal fisheries. 

 

Freshwater requirements of estuarine and coastal fisheries 

 

Conflicts over the allocation of freshwater for human and ecosystem needs are 

increasingly emerging throughout the world (Poff et al. 2003), particularly in areas of 

agricultural and ecological importance (Falkenmark 2003). For example, management 

strategies concerned with allocating freshwater to maintain agricultural production 

and conserve biodiversity remain highly disputed in the Murray-Darling Basin in 

eastern Australia (Kingsford et al. In Press). Fortunately, there is increasing 

recognition that estuarine and coastal systems require a sufficient volume of 

freshwater to maintain biogeochemical processes (Benson 1981; Sklar and Browder 

1998; Powell et al. 2002), but this remains to be quantified in many regions of the 

world. Knowledge regarding the freshwater requirements of estuarine and coastal 

systems is far from complete (Gillanders and Kingsford 2002). Information on the 

freshwater requirements of estuarine and coastal systems is essential to ensure that the 

interests of commercial fishers are duly represented in decision-making processes 

associated with the allocation of environmental flows. Recognition that freshwater 

flow strongly influences fisheries production in estuarine and coastal systems is 

increasingly emerging in policy, planning and legislation (Montagna et al. 2002). 

 

Methods to determine the freshwater requirements of estuarine and coastal systems 

have been developed in southern Africa. In the Mtata estuary on the east coast of 
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southern Africa, for example, mean winter flows < 4 m3 s–1 favour the colonisation of 

estuarine biota by promoting natural seasonal flow patterns, establishing a 

longitudinal salinity gradient and reducing sediment loads (Adams et al. 2002). 

Simulation models have explored changes to estuarine nursery function under 

alternative flow scenarios. Annual flows into the Great Brak estuary on the west coast 

of southern Africa can be halved to 17.35 × 10–6 m3 with no discernable effect on fish 

recruitment but a sharp decline in estuarine immigration resulted thereafter (Quinn et 

al. 1999). Reduced flows are expected to decrease landings of 

commercially-important species that currently dominate fisheries harvest. For 

example, a 44% reduction in freshwater flow from the Thukela River is predicted to 

decrease commercial landings of slinger (Chrysoblephus puniceus) and squaretail kob 

(Argyrosomus thorpei) by 36% and 28% respectively in the Thukela Bank linefishery 

in KwaZulu-Natal (Lamberth et al. 2009). 

 

A variety of techniques have been presented to manage the delivery of freshwater into 

estuarine and coastal systems in North America: the optimisation of biological 

productivity under specified environmental conditions in Texas (Powell et al. 2002); 

abstraction limits to a percentage of flow at the time of withdrawal in Florida 

(Flannery et al. 2002); the establishment of salinity gradient ≥ 2 psu to maximise 

estuarine habitat in California (Kimmerer 2002b); and pulsed freshwater events to 

maximise oyster production in the Gulf of Mexico (La Peyre et al. 2009). 

 

Less is known about the freshwater requirements of estuarine and coastal systems in 

Australia. Protecting natural variation in the flow regime is likely to be the most 

reliable management strategy to maintain fisheries production (Loneragan and Bunn 
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1999; Robins et al. 2005; Gillson et al. 2009). Seasonal variation in freshwater flow is 

the most important aspect of the flow regime that influences the production of 

estuarine and coastal fisheries. For example, summer flows explained the highest 

proportion (69-80%) of variation in fish and invertebrate landings from the Logan 

River and Moreton Bay fishery in northern Australia (Loneragan and Bunn 1999). 

Seasonal pulses of freshwater are particularly important for juvenile fish inhabiting 

estuarine nursery grounds. For instance, high flows during spring and summer 

positively influence the recruitment of juvenile barramundi and king threadfin 

(Polydactylus macrochir) in eastern Australia (Staunton-Smith et al. 2004; Halliday et 

al. 2008). 

 

Ensuring the delivery of freshwater into estuarine and coastal systems is essential to 

minimise the combined impacts of drought and human water extraction on fish and 

invertebrates (Whitfield and Bruton 1989; Vivier and Cyrus 2002; Vivier et al. 2010). 

Identifying the freshwater requirements of estuarine and coastal fisheries is likely to 

be more difficult in highly regulated catchments, where variability in the flow regime 

is managed for human requirements. River regulation can dampen hydrological 

extremes, decouple fisheries–flow relationships and hinder the identification of 

important aspects of the flow regime for maintaining fisheries production (Gillson et 

al. 2009). Since many regulated rivers flow across jurisdictional boundaries 

(Kingsford et al. 1998), the management of freshwater resources over large 

geographic areas is problematic. Gaining political and managerial consensus in 

international transboundary rivers has proven difficult (Bernauer 2002). Nevertheless, 

protecting the goods and services provided by estuarine and coastal ecosystems 

requires the implementation of integrated water resource management (Jewitt 2002). 
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An improved understanding of the freshwater requirements of estuarine and coastal 

fisheries is essential to appreciate the impacts of climate change on fisheries 

production. 

 

Freshwater flow and fisheries production in a changing climate 

 

Climate change is predicted to have major impacts on fisheries production (Brander 

2007), potentially influencing the economies of many developing nations worldwide 

(Allison et al. 2009). Regional climatic variability is responsible for recent changes in 

the production of estuarine and coastal fisheries due to alterations in fish distribution 

and abundance (Roessig et al. 2004; Lehodey et al. 2006; Jennings and Brander 

2010). Future changes in climate are expected to spatially redistribute fisheries 

landings in estuarine and coastal systems (Cheung et al. 2010). Many marine studies 

predicting the impacts of climate change on fish communities have focused on the 

effects of warmer temperature (e.g. Perry et al. 2005; Fogarty et al. 2008; Jennings 

and Brander 2010). In contrast, possible changes to fish communities under 

alternative freshwater flow scenarios have received relatively little attention. 

 

Increased climatic variability is projected to modify the hydrological cycle with 

associated changes in rainfall, evaporation, surface runoff, groundwater and 

freshwater flow (Zestser and Loaiciga 1993; Loaiciga et al. 1996; Milly et al. 2005). 

Reductions in rainfall and warmer temperatures are expected to decrease freshwater 

resources in eastern Australia and southern Africa (Kundzewicz et al. 2007). Greater 

hydrological extremes are predicted to increase the frequency and intensity of flood 

and drought events in these regions (Meehl et al. 2007). Alterations to freshwater flow 
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resulting from climate change could be exacerbated by human population growth 

increasing demand for water resources (Vörösmarty et al. 2000). It is likely that the 

impacts of future changes in rainfall and freshwater flow on fisheries production will 

vary between geographic regions. For example, increased monsoonal rainfall is 

projected to elevate fish production in northern China (Qiu et al. 2010), whereas 

decreased freshwater flow is projected to reduce penaeid prawn production in eastern 

Australia (Ives et al. 2009). 

 

Future changes in freshwater flow will modify primary and secondary production by 

altering the supply of nutrients and organic matter into estuarine and coastal systems 

(Mallin et al. 1993; Rabalais et al. 1996; Struyf et al. 2004). These changes to primary 

and secondary production are expected to modify the productivity of commercial 

fisheries (Kennedy 1990; Lehodey et al. 2006; Jennings and Brander 2010). Estuarine 

and coastal systems will be mainly impacted by changes to the delivery of 

nutrient-enriched freshwater through the exacerbation of current stresses such as 

eutrophication and hypoxia (Vitousek et al. 1997; Cloern 2001; Rabalais et al. 2009). 

For example, climate predictions indicate a 20% increase in freshwater flow entering 

the Gulf of Mexico, which is expected to negatively impact coastal biota due to 

elevated nutrient loads increasing primary production and expanding the 

oxygen-depleted area (Justić et al. 1996). Eutrophication and hypoxia are arguably the 

biggest threats to estuarine and coastal fisheries due to the creation of dead zones with 

limited biological productivity (Diaz and Rosenberg 2008). 

 

Alterations to freshwater flow and rising sea levels are likely to modify habitat 

availability for fish and invertebrates in estuarine and coastal systems (Kennedy 
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1990). Increased ocean volume and decreased flows could increase habitat for marine 

species by expanding saline habitats inland (Cheung et al. 2009). In contrast, upstream 

saline intrusion could decrease habitat for freshwater species that inhabit lakes and 

rivers (Ficke et al. 2007). Decreased flows are expected to negatively impact the 

recruitment of marine fish in estuaries. In eastern Australia, for example, lower flows 

are expected to reduce the survival of black bream eggs and larvae in estuaries by 

increasing salinity stratification and hypoxic low-oxygen conditions during the 

spawning period (Nicholson et al. 2008). Reductions in the extent of riverine plume 

fronts will decrease offshore concentrations of land-based cues that stimulate larval 

immigration towards estuarine nursery grounds (Vinagre et al. 2009). Lower flows 

could modify the phenological activities of estuarine-dependent fish by altering 

synchrony between the delivery of freshwater flow and recurring life cycle events. 

Impacts would be most pronounced for anadromous species that require seasonal 

flows to provide offshore environmental cues for migration towards riverine spawning 

grounds. For example, the upstream migration of Atlantic salmon (Salmo salar) into 

rivers has been delayed by low flows during hot dry summers in the South West of 

England (Solomon and Sambrook 2004). 

 

It is unclear exactly how future increases in flood events will impact fisheries 

production in estuarine and coastal systems. Although climate projections indicate 

that flooding will increase in frequency and intensity in the future (Meehl et al. 2007), 

the impacts of more frequent and intense flood events on estuarine and coastal 

systems have not been predicted in detail. Evidence from recent studies indicates that 

increased flood occurrence could reduce species abundance and diversity by 

disrupting food web structure and reducing the availability of high salinity habitat in 
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estuarine and coastal systems (Whitfield and Harrison 2003; Cardoso et al. 2008; 

Vinagre et al. 2010). In contrast, the impacts of drought events on estuarine and 

coastal fisheries have been predicted with greater confidence. More frequent droughts 

are likely to modify the structure and function of estuarine and coastal systems. In the 

Tagus estuary on the western coast of Portugal, for example, the increased frequency 

of droughts is expected to modify food web structure, decrease the availability of 

nursery habitats and diminish resilience to disturbance events (Vinagre et al. 2010). 

Changes to ecological processes arising from droughts are likely to negatively impact 

the productivity of estuarine and coastal fisheries. For instance, future reductions in 

freshwater flow due to droughts are predicted to decrease commercial landings of 

penaeid prawns on the east coast of Australia (Ives et al. 2009). 

 

Predicting the impacts of future changes in freshwater flow on estuarine and coastal 

fisheries is essential to inform long-term policy debate and strategic management 

issues. It is necessary to identify management strategies that will ensure the 

sustainability of estuarine and coastal fisheries under circumstances of increased flow 

variability. Sustainable management of estuarine and coastal fisheries could be 

achieved by adjusting quotas to relieve fishing pressure on species that are sensitive to 

variation in freshwater flow associated with climate change. More detailed 

hydrological projections are required to predict the impacts of future changes in 

freshwater flow on the productivity of estuarine and coastal fisheries with greater 

certainty. 

 

Conclusions 
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Freshwater flow impacts fisheries production by regulating environmental factors that 

determine habitat availability, trophic interactions and fishers’ harvesting behaviour in 

estuarine and coastal systems. Seasonal and interannual variation in freshwater flow 

influences the distribution and abundance of fish and invertebrates through changes in 

growth, survival and recruitment. Flood and drought events have the most pronounced 

impacts on fisheries production due to rapid changes in physicochemical conditions 

modifying species richness and diversity. Our current understanding of the impacts of 

freshwater flow on fisheries production has been limited by an inability to separate the 

effects of physical aspects of freshwater flow from nutrient delivery aspects. An 

improved understanding will only emerge as we gain a better appreciation of the 

effects of variable flows on habitat availability and trophic dynamics. Research 

emphasis has now shifted to a more holistic approach due to the realisation that 

freshwater flow influences a myriad of environmental factors that impact the life 

histories of fish and invertebrates in estuarine and coastal systems. 

 

Estuarine and coastal fisheries are under increasing threat from river regulation 

modifying natural flow regimes. Protecting natural flow regimes is likely to be the 

most effective management strategy to maintain the production of estuarine and 

coastal fisheries. Information on the socio-economic impacts of variable flows on 

commercial fisheries is required to resolve some of the outstanding problems in 

determining the freshwater requirements of estuarine and coastal systems. 

Understanding the freshwater requirements of estuarine and coastal fisheries will 

become increasingly important as climate change modifies the hydrological cycle and 

human population growth increases demand for water resources. Fisheries scientists 
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and managers must therefore continue to emphasise the important role of freshwater 

flow in maintaining the production of estuarine and coastal fisheries. Only then will 

the interests of commercial fishers in estuarine and coastal systems be duly 

represented in decision-making processes associated with the allocation of 

environmental flows. 

 

One of the main challenges for scientists seeking to explore relationships between 

freshwater flow and fisheries production is to understand how variable flows 

influence resource availability, fishing activity and the economic performance of 

commercial fisheries in estuarine and coastal systems. Three areas of priority for 

future research are suggested: investigating connections between seasonal flows and 

the timing of recurring life cycle events in marine fish; examining relationships 

between freshwater flow and fishing activity; and developing bio-economic models to 

predict the effects of variable flows on commercial fisheries under alternative climate 

scenarios. 
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Table 1. Examples of relationships between freshwater flow (or rainfall) and landings 

of fish and invertebrates in estuarine and coastal systems. 

 

Figure 1. A summary of published articles examining the impacts of freshwater flow 

(or rainfall) on fishery-related research topics in estuarine and coastal systems from 

1910 to 2010. A comprehensive search of 5 scientific databases (CSA Illumina, 

Geobase, ISI Web of Science, Scopus and OvidSP) identified 823 peer-reviewed 

articles that used the following key-words and search logic: freshwater flow OR rain* 

AND fish* AND estuar* AND coast*. Synonyms used in the literature search were 

‘precipitation’ OR ‘freshwater inflow’ OR ‘freshwater outflow’ OR ‘freshwater input’ 

OR ‘freshwater output’ OR ‘freshwater runoff’ OR ‘freshwater discharge’ OR ‘river 

discharge’ OR ‘river flow’ OR ‘river inflow’ OR ‘river outflow’ OR ‘river input’ OR 

‘river output’ OR ‘river runoff’ OR ‘riverine flow’ OR ‘riverine inflow’ OR ‘riverine 

outflow’ OR ‘riverine input’ OR ‘riverine output’ OR ‘riverine runoff’ OR ‘riverine 

discharge’ OR ‘streamflow’ OR ‘stream flow’ OR ‘stream discharge’ OR ‘stream 

inflow’ OR ‘stream outflow’ OR ‘stream input’ OR ‘stream output’ OR ‘stream 

runoff’ OR ‘stream discharge’ OR ‘fluvial flow’ OR ‘fluvial flow’ OR ‘fluvial 

discharge’ OR ‘fluvial inflow’ OR ‘fluvial outflow’ OR ‘fluvial input’ OR ‘fluvial 

output’ OR ‘fluvial runoff’ OR ‘fluvial discharge’. 

 

Figure 2. A global comparison of the coefficient of variation for annual freshwater 

flow in river catchments greater than 1000 km2. The number of river systems 

examined in each location is shown in parentheses above each bar. (Modified from 

Finlayson and McMahon 1988). 
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Figure 3. Relationships between log10 catch per unit effort for dusky flathead and 

minimum spring flow in the Clarence (a), Hunter (b) and Hawkesbury (c) River 

estuaries of eastern Australia. *P < 0.05; ** P < 0.01; n = 10. Minimum flow indicates 

the lowest spring flows. (Modified from Gillson et al. 2009). 

 

Figure 4. A conceptual model illustrating the controlling influence of freshwater flow 

on the production of estuarine and coastal fisheries. Note that freshwater flow 

influences fisheries production by regulating habitat availability (white arrows), 

trophic interactions (grey arrows) and fishers’ harvesting behaviour (black arrows) in 

estuarine and coastal systems. 

 

Figure 5. Difference index of landings per guild (kg of each guild per month) between 

flood and drought events in the estuarine and coastal fisheries associated with the 

Clarence, Hunter and Hawkesbury Rivers of eastern Australia. Results based on 

fourth-root transformed data. Estuarine use guilds consisted of Amphidromous (AM); 

Catadromous (CA); Estuarine Migrant (EM); Estuarine Resident (ER); Marine 

estuarine Dependent (MD); Marine estuarine-Opportunist (MO); and Marine 

Straggler (MS). (Modified from Gillson et al. under review). 

 

Figure 6. Mean revenue per month (AU$ millions) from the three most financially 

productive fishing methods during non-drought (white bars) and drought (black bars) 

conditions in the estuarine and coastal fisheries associated with the Clarence, Hunter 

and Hawkesbury Rivers of eastern Australia. Fishing method abbreviations are 

Estuarine Prawn Trawl (EPT), Gillnetting (GI), Hauling Net (HN) and Ocean Prawn 

Trawl (OPT). (Modified from Gillson and Scandol under review). 
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